Some elements of nonlinear elasticity of growing materials

Michael H. Köpf

January 8, 2015

A very good introduction to nonlinear elasticity can be found in the book by Fu and Ogden [FO01]. A necessary starter to dive into elasticity theory is certainly the classical textbook by Landau and Lifshitz [LL70].

In the following, the component notation $c_i = A_{ij}b_j$ with Einstein summation over repeated indices is preferred over the notation $\mathbf{c} = \mathbf{A} \cdot \mathbf{b}$, because the latter has to be translated to the former for every actual calculation, anyway.

1 Basic definitions

The elastic deformation can quantified by comparison of the deformed state \mathcal{B} to a reference state \mathcal{A} . We denote the coordinates in the reference frame \mathcal{A} by $x_i^{(\mathcal{A})}$ and use $X_i^{(\mathcal{B})}$ for the coordinates in the current state \mathcal{B}^1 . Further, we introduce a mapping \mathbf{F} that relates the coordinates of identical material points in A to the corresponding coordinates in B (see Fig. 1). In order to simplify our notation, we introduce the shorthands $\partial_i^{(\mathcal{A})} := \partial/\partial x_i^{(\mathcal{A})}$ and $\partial_i^{(\mathcal{B})} := \partial/\partial x_i^{(\mathcal{B})}$ for the partial derivatives with respect to the coordinates in both frames. We define the *deformation gradient tensor* \mathbf{F} by

$$F_{ij} = \partial_j^{(\mathcal{A})} x_i^{(\mathcal{B})} \tag{1}$$

¹Note, that the majority of the literature uses lower case coordinate names x_i , in the deformed frame and capital coordinate names X_i in the reference frame.

Figure 1: We distinguish two configurations: The reference state \mathcal{A} and the elastically deformed state \mathcal{B} . The mapping **F** relates both configurations to each other.

and introduce the symbol $J_F = |\mathbf{F}|$ for its determinant. The deformation of the solid is quantified by the *strain* ω defined as ²

$$\omega_{ij} = F_{ki}F_{kj} - \delta_{ij}.$$
 (2)

Nanson's formula In order to relate the oriented area element $dA_i^{(\mathcal{A})}$ in frame \mathcal{A} to $dA_i^{(\mathcal{B})}$ in frame \mathcal{B} , we consider infinitesimal volume elements in both frames \mathcal{A} and \mathcal{B} and use $dx_i^{(\mathcal{B})} = F_{ij} dx_j^{(\mathcal{A})}$:

$$dV^{(\mathcal{B})} = J_F dV^{(\mathcal{A})} = J_F dA_i^{(\mathcal{A})} dx_i^{(\mathcal{A})}$$
(3)

and

$$\mathrm{d}V^{(\mathcal{B})} = \mathrm{d}A_i^{(\mathcal{B})} \mathrm{d}x_i^{(\mathcal{B})} = \mathrm{d}A_i^{(\mathcal{B})} F_{ij} \mathrm{d}x_j^{(\mathcal{A})}.$$
 (4)

From these two formulas we conclude

$$J_F dA_i^{(\mathcal{A})} = dA_k^{(\mathcal{B})} F_{ki}$$

$$\Leftrightarrow J_F \left(F^{-1}\right)_{il} dA_i^{(\mathcal{A})} = dA_l^{(\mathcal{B})}$$

$$\Leftrightarrow J_F \left(F^{-1}\right)_{il} n_i^{(\mathcal{A})} dA^{(\mathcal{A})} = n_i^{(\mathcal{B})} dA^{(\mathcal{B})}.$$
(5)

Analogously, we find

$$n_i^{(\mathcal{A})} \mathrm{d}A^{(\mathcal{A})} = J_F^{-1} F_{ki} n_k^{(\mathcal{B})} \mathrm{d}A^{(\mathcal{B})}.$$
 (6)

Helpful relations A few non-obvious identities can be found using Nanson's formula and very simple geometric arguments. Consider an arbitrary closed surface $\delta \omega$ of some volume ω in the reference frame \mathcal{A} .

$$0 = \int_{\partial \omega} \mathrm{d}A^{(\mathcal{A})} n_i^{(\mathcal{A})} = \int_{\partial \Omega} \mathrm{d}A^{(\mathcal{B})} J_F^{-1} F_{ki} n_k^{(\mathcal{B})} \tag{7}$$

Since we can choose the surface $\partial \omega$ arbitrarily, we find

(**1**)

$$\partial_k^{(\mathcal{B})} \left(J_F^{-1} F_{ki} \right) = 0. \tag{8}$$

In other words: in the sum $\partial_k^{(\mathcal{B})}$ and $J_F^{-1}F_{ki}$ commute. Analogously, we can show that

$$\partial_k^{(\mathcal{A})} \left(J_F \left(F^{-1} \right)_{ki} \right) = 0.$$
(9)

Three different stress tensors The surface force per unit area on a vector area element $d\mathbf{A}^{(\mathcal{B})}$ in the current frame \mathcal{B} is expressed by the *Cauchy stress* Σ_{ij} . Using relation (5) we can translate this to a force per unit area on a vector area element $d\mathbf{A}^{(\mathcal{A})}$ in the reference frame \mathcal{A} .

$$\Sigma_{ij} n_j^{(\mathcal{B})} = \underbrace{J_F \left(F^{-1}\right)_{kj} \Sigma_{ij}}_{=: \sigma_{ik}} n_k^{(\mathcal{A})} \mathrm{d}A^{(\mathcal{A})} = \sigma_{ij} n_j^{(\mathcal{A})} \mathrm{d}A^{(\mathcal{A})}, \qquad (10)$$

where we have defined the first Piola-Kirchhoff stress σ . The inverse relation is

$$\Sigma_{ij} = J_F^{-1} F_{jk} \sigma_{ik}.$$
(11)

²In the notation of Landau and Lifshitz [LL70] $\omega_{ij} = 2u_{ij}$.

Note, that unlike the Cauchy stress Σ , the first Piola-Kirchhoff stress σ is not symmetric.

Both $\Sigma dA^{(\mathcal{B})}$ and $\sigma dA^{(\mathcal{A})}$ are force vectors in the current frame \mathcal{B} . Using **F**, we can map it to the reference configuration \mathcal{A} and obtain

$$(F^{-1})_{ij} \Sigma_{jk} n_k^{(\mathcal{B})} \mathrm{d}A^{(\mathcal{B})} = \underbrace{J_F \left(F^{-1}\right)_{ij} \left(F^{-1}\right)_{lk} \Sigma_{kj}}_{=: s_{il}} n_l^{(\mathcal{A})} \mathrm{d}A^{(\mathcal{A})}$$
$$= \underbrace{\left(F^{-1}\right)_{ij} \sigma_{jk}}_{=: s_{ik}} n_k^{(\mathcal{A})} \mathrm{d}A^{(\mathcal{A})}$$
$$= s_{ij} n_j^{(\mathcal{A})} \mathrm{d}A^{(\mathcal{A})}$$
(12)

where we defined the second Piola-Kirchhoff stress s. The inverse relations are

$$\Sigma_{ij} = J_F^{-1} F_{il} F_{jk} s_{kl} \quad \text{and} \quad \sigma_{ij} = F_{ik} s_{kj}.$$
(13)

Note, that $\partial_j^{(\mathcal{B})} \Sigma_{ij}$ on the one hand and $\partial_j^{(\mathcal{A})} \sigma_{ij}$ and $\partial_j s_{ij}$ on the other hand are force *densities* with respect to different volumina and therefore differ by a factor of J_F . This can be easily seen by noting that

$$F_i^{(\text{tot})} = \int_{\omega} \mathrm{d}V^{(\mathcal{B})} \partial_j^{(\mathcal{A})} \sigma_{ij} \tag{14}$$

and

$$F_i^{(\text{tot})} = \int_{\Omega} \mathrm{d}V^{(\mathcal{B})} \partial_j^{(\mathcal{A})} \Sigma_{ij} = \int_{\omega} \mathrm{d}V^{(\mathcal{B})} J_F \partial_j^{(\mathcal{B})} \sigma_{ij}.$$
 (15)

Relation of the Piola-Kirchhoff stresses to the elastic free energy In Hookean elasticity, where, the Cauchy stress is the derivative of the elastic free energy density per unit volume \mathcal{L}_{el} with respect to the linear strain $\omega_{ij}^{(\text{lin})} = u_{i,j} + u_{j,i}$:

$$\Sigma_{ij} = 2 \frac{\partial \mathcal{L}_{\text{el}}}{\partial \omega_{ij}^{(\text{lin})}}.$$
(16)

In nonlinear elasticity, the second Piola-Kirchhoff stress takes the role of the Cauchy stress:

$$s_{ij} = 2 \frac{\partial \mathcal{L}_{\rm el}}{\partial \omega_{ij}}.$$
 (17)

The first Piola-Kirchhoff stress is given by the derivative of $\partial \mathcal{L}_{el}$ with respect to the deformation gradient tensor F_{ij} :

$$\sigma_{ij} = \frac{\partial \mathcal{L}_{el}}{\partial F_{ij}} = \frac{\partial \mathcal{L}_{el}}{\partial \omega_{kl}} \frac{\partial \omega_{kl}}{\partial F_{ij}} = \frac{1}{2} s_{kl} \left(F_{ik} \delta_{lj} + F_{il} \delta_{kj} \right) = \frac{1}{2} \left(s_{kj} + s_{jk} \right) F_{ik}$$

= $F_{ik} s_{kj}$. (18)

In the last step, we have used the symmetry of the second Piola-Kirchhoff stress \mathbf{s} .

Figure 2: If we have growth and elasticity, we distinguish three configurations: The reference state \mathcal{A} , the virtual configuration of a stress-free grown state \mathcal{V} , and the actual grown and elastically deformed state \mathcal{B} . The mappings **G**, **A**, and **F** relate the three configurations to each other.

2 Elasticity and growth

When the considered material is growing, for example because it is a biological tissue consisting of proliferating cells, one has to seperate the deformation due to growth from elastic deformation. This is basically the distinction between growth of a spring (that might be caused by uniform thermal expansion) versus extension of the spring by external forces. To make this distinction quantitative, seperate the deformation gradient tensor \mathbf{F} into a product of the two tensors \mathbf{G} and \mathbf{A} as proposed by Rodriguez et al. [RHM94] yielding

$$F_{ij} = A_{ik}G_{kj},\tag{19}$$

where the growth tensor **G** describes the deformation due to growth and **A** describes the elastic part of the deformation³. We can then distinguish not only between the reference state \mathcal{A} and the current deformed state \mathcal{B} , but also define the virtual state \mathcal{V} , that describes the grown but otherwise undeformed material (see Fig. 2). Analogously to the case without growth, we use the shorthands $\partial_i^{(\mathcal{A})} := \partial/\partial x_i^{(\mathcal{A})}$, $\partial_i^{(\mathcal{B})} := \partial/\partial x_i^{(\mathcal{B})}$, and $\partial_i^{(\mathcal{V})} := \partial/\partial x_i^{(\mathcal{V})}$ for the partial derivatives with respect to the different coordinate frames and define $J_F = |\mathbf{F}|, J_G = |\mathbf{G}|, \text{ and } J_A = |\mathbf{A}|$. Elastic deformation is deformation from \mathcal{V} to \mathcal{B} , only. Therefore, we can for the moment forget about the frame \mathcal{A} and consider \mathcal{V} the reference state. We can then define the virtual Piola-Kirchhoff stress $\sigma^{(\mathcal{V})}$ that translates the force per unit area in the frame \mathcal{B} to a force per unit area in the frame \mathcal{V} as

$$\sigma^{(\mathcal{V})} = \frac{\partial \mathcal{L}_{\rm el}}{\partial A_{ij}}.$$
(20)

³The possibility of this sepeartion and its implications are briefly discussed in [Cow04]

Since the physical force is the same, no matter which frame we choose, the following two equalities have to hold:

$$\Sigma_{ij} n_j^{(\mathcal{B})} \mathrm{d}A^{(\mathcal{B})} = \sigma_{ij} n_j^{(\mathcal{A})} \mathrm{d}A^{(\mathcal{A})} = \sigma_{ij}^{(\mathcal{V})} n_j^{(\mathcal{V})} \mathrm{d}A^{(\mathcal{V})}.$$
 (21)

Using the transformation of the spatial derivative⁴ $\partial_j^{(\mathcal{V})} = (G^{-1})_{kj}\partial_k^{(\mathcal{A})}$ one can use Nanson's formula (5) applied to \mathcal{V} , \mathcal{B} , and **G** to find

$$n_i^{(\mathcal{V})} \mathrm{d}A^{(\mathcal{V})} = J_G \left(G^{-1} \right)_{ij} n_j^{(\mathcal{A})} \mathrm{d}A^{(\mathcal{A})}.$$
(22)

When we insert this result into eq. (21), we obtain

$$\underbrace{J_G \sigma_{ij}^{(\mathcal{V})} \left(G^{-1}\right)_{kj}}_{= \sigma_{ik}} n_k^{(\mathcal{A})} \mathrm{d}A^{(\mathcal{A})} = \sigma_{ij} n_j^{(\mathcal{A})} \mathrm{d}A^{(\mathcal{A})}, \tag{23}$$

and have thus established the relation between the Piola-Kirchhoff stresses σ_{ij} and $\sigma_{ij}^{(\mathcal{V})}$.

References

- [Cow04] Stephen C. Cowin. Tissue growth and remodeling. Annu. Rev. Biomed. Eng., 6(1):77–107, July 2004.
- [FO01] Y. B. Fu and R. W. Ogden. Nonlinear Elasticity: Theory and Applications. Cambridge University Press, Cambridge, 2001.
- [LL70] L. D. Landau and E. M. Lifshitz. Theory of Elasticity. Pergamon Press, New York, 2nd edition, 1970.
- [RHM94] Edward K. Rodriguez, Anne Hoger, and Andrew D. McCulloch. Stress-dependent finite growth in soft elastic tissues. *Journal of Biomechanics*, 27(4):455–467, April 1994.

⁴Analogously, we have $\partial_i^{(\mathcal{B})} = (A^{-1})_{ji}\partial_i^{(\mathcal{V})}$.