Some elements of nonlinear elasticity of growing materials

Michael H. Köpf

January 8, 2015

A very good introduction to nonlinear elasticity can be found in the book by Fu and Ogden [FO01]. A necessary starter to dive into elasticity theory is certainly the classical textbook by Landau and Lifshitz [LL70].

In the following, the component notation $c_{i}=A_{i j} b_{j}$ with Einstein summation over repeated indices is preferred over the notation $\mathbf{c}=\mathbf{A} \cdot \mathbf{b}$, because the latter has to be translated to the former for every actual calculation, anyway.

1 Basic definitions

The elastic deformation can quantified by comparison of the deformed state \mathcal{B} to a reference state \mathcal{A}. We denote the coordinates in the reference frame \mathcal{A} by $x_{i}^{(\mathcal{A})}$ and use $X_{i}^{(\mathcal{B})}$ for the coordinates in the current state \mathcal{B}^{1}. Further, we introduce a mapping \mathbf{F} that relates the coordinates of identical material points in A to the corresponding coordinates in B (see Fig. 1). In order to simplify our notation, we introduce the shorthands $\partial_{i}^{(\mathcal{A})}:=\partial / \partial x_{i}^{(\mathcal{A})}$ and $\partial_{i}^{(\mathcal{B})}:=\partial / \partial x_{i}^{(\mathcal{B})}$ for the partial derivatives with respect to the coordinates in both frames. We define the deformation gradient tensor \mathbf{F} by

$$
\begin{equation*}
F_{i j}=\partial_{j}^{(\mathcal{A})} x_{i}^{(\mathcal{B})} \tag{1}
\end{equation*}
$$

[^0]

Figure 1: We distinguish two configurations: The reference state \mathcal{A} and the elastically deformed state \mathcal{B}. The mapping \mathbf{F} relates both configurations to each other.
and introduce the symbol $J_{F}=|\mathbf{F}|$ for its determinant. The deformation of the solid is quantified by the strain ω defined as ${ }^{2}$

$$
\begin{equation*}
\omega_{i j}=F_{k i} F_{k j}-\delta_{i j} \tag{2}
\end{equation*}
$$

Nanson's formula In order to relate the oriented area element $\mathrm{d} A_{i}^{(\mathcal{A})}$ in frame \mathcal{A} to $\mathrm{d} A_{i}^{(\mathcal{B})}$ in frame \mathcal{B}, we consider infinitesimal volume elements in both frames \mathcal{A} and \mathcal{B} and use $\mathrm{d} x_{i}^{(\mathcal{B})}=F_{i j} \mathrm{~d} x_{j}^{(\mathcal{A})}$:

$$
\begin{equation*}
\mathrm{d} V^{(\mathcal{B})}=J_{F} d V^{(\mathcal{A})}=J_{F} \mathrm{~d} A_{i}^{(\mathcal{A})} \mathrm{d} x_{i}^{(\mathcal{A})} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{d} V^{(\mathcal{B})}=\mathrm{d} A_{i}^{(\mathcal{B})} \mathrm{d} x_{i}^{(\mathcal{B})}=\mathrm{d} A_{i}^{(\mathcal{B})} F_{i j} \mathrm{~d} x_{j}^{(\mathcal{A})} \tag{4}
\end{equation*}
$$

From these two formulas we conclude

$$
\begin{align*}
& J_{F} \mathrm{~d} A_{i}^{(\mathcal{A})}=\mathrm{d} A_{k}^{(\mathcal{B})} F_{k i} \\
\Leftrightarrow & J_{F}\left(F^{-1}\right)_{i l} \mathrm{~d} A_{i}^{(\mathcal{A})}=\mathrm{d} A_{l}^{(\mathcal{B})} \\
\Leftrightarrow & J_{F}\left(F^{-1}\right)_{i l} n_{i}^{(\mathcal{A})} \mathrm{d} A^{(\mathcal{A})}=n_{i}^{(\mathcal{B})} \mathrm{d} A^{(\mathcal{B})} . \tag{5}
\end{align*}
$$

Analogously, we find

$$
\begin{equation*}
n_{i}^{(\mathcal{A})} \mathrm{d} A^{(\mathcal{A})}=J_{F}^{-1} F_{k i} n_{k}^{(\mathcal{B})} \mathrm{d} A^{(\mathcal{B})} \tag{6}
\end{equation*}
$$

Helpful relations A few non-obvious identities can be found using Nanson's formula and very simple geometric arguments. Consider an arbitrary closed surface $\delta \omega$ of some volume ω in the reference frame \mathcal{A}.

$$
\begin{equation*}
0=\int_{\partial \omega} \mathrm{d} A^{(\mathcal{A})} n_{i}^{(\mathcal{A})}=\int_{\partial \Omega} \mathrm{d} A^{(\mathcal{B})} J_{F}^{-1} F_{k i} n_{k}^{(\mathcal{B})} \tag{7}
\end{equation*}
$$

Since we can choose the surface $\partial \omega$ arbitrarily, we find

$$
\begin{equation*}
\partial_{k}^{(\mathcal{B})}\left(J_{F}^{-1} F_{k i}\right)=0 \tag{8}
\end{equation*}
$$

In other words: in the sum $\partial_{k}^{(\mathcal{B})}$ and $J_{F}^{-1} F_{k i}$ commute. Analogously, we can show that

$$
\begin{equation*}
\partial_{k}^{(\mathcal{A})}\left(J_{F}\left(F^{-1}\right)_{k i}\right)=0 . \tag{9}
\end{equation*}
$$

Three different stress tensors The surface force per unit area on a vector area element $\mathrm{d} \mathbf{A}^{(\mathcal{B})}$ in the current frame \mathcal{B} is expressed by the Cauchy stress $\Sigma_{i j}$. Using relation (5) we can translate this to a force per unit area on a vector area element $\mathrm{d} \mathbf{A}^{(\mathcal{A})}$ in the reference frame \mathcal{A}.

$$
\begin{equation*}
\Sigma_{i j} n_{j}^{(\mathcal{B})}=\underbrace{J_{F}\left(F^{-1}\right)_{k j} \Sigma_{i j}}_{=: \sigma_{i k}} n_{k}^{(\mathcal{A})} \mathrm{d} A^{(\mathcal{A})}=\sigma_{i j} n_{j}^{(\mathcal{A})} \mathrm{d} A^{(\mathcal{A})} \tag{10}
\end{equation*}
$$

where we have defined the first Piola-Kirchhoff stress $\boldsymbol{\sigma}$. The inverse relation is

$$
\begin{equation*}
\Sigma_{i j}=J_{F}^{-1} F_{j k} \sigma_{i k} \tag{11}
\end{equation*}
$$

[^1]Note, that unlike the Cauchy stress $\boldsymbol{\Sigma}$, the first Piola-Kirchhoff stress $\boldsymbol{\sigma}$ is not symmetric.

Both $\boldsymbol{\Sigma} \mathrm{d} \mathbf{A}^{(\mathcal{B})}$ and $\boldsymbol{\sigma} \mathrm{d} \mathbf{A}^{(\mathcal{A})}$ are force vectors in the current frame \mathcal{B}. Using \mathbf{F}, we can map it to the reference configuration \mathcal{A} and obtain

$$
\begin{align*}
\left(F^{-1}\right)_{i j} \Sigma_{j k} n_{k}^{(\mathcal{B})} \mathrm{d} A^{(\mathcal{B})} & =\underbrace{J_{F}\left(F^{-1}\right)_{i j}\left(F^{-1}\right)_{l k} \Sigma_{k j}}_{=: s_{i l}} n_{l}^{(\mathcal{A})} \mathrm{d} A^{(\mathcal{A})} \\
& =\underbrace{\left(F^{-1}\right)_{i j} \sigma_{j k}}_{=: s_{i k}} n_{k}^{(\mathcal{A})} \mathrm{d} A^{(\mathcal{A})} \\
& =s_{i j} n_{j}^{(\mathcal{A})} \mathrm{d} A^{(\mathcal{A})} \tag{12}
\end{align*}
$$

where we defined the second Piola-Kirchhoff stress \mathbf{s}. The inverse relations are

$$
\begin{equation*}
\Sigma_{i j}=J_{F}^{-1} F_{i l} F_{j k} s_{k l} \quad \text { and } \quad \sigma_{i j}=F_{i k} s_{k j} \tag{13}
\end{equation*}
$$

Note, that $\partial_{j}^{(\mathcal{B})} \Sigma_{i j}$ on the one hand and $\partial_{j}^{(\mathcal{A})} \sigma_{i j}$ and $\partial_{j} s_{i j}$ on the other hand are force densities with respect to different volumina and therefore differ by a factor of J_{F}. This can be easily seen by noting that

$$
\begin{equation*}
F_{i}^{(\text {tot })}=\int_{\omega} \mathrm{d} V^{(\mathcal{B})} \partial_{j}^{(\mathcal{A})} \sigma_{i j} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{i}^{(\text {tot })}=\int_{\Omega} \mathrm{d} V^{(\mathcal{B})} \partial_{j}^{(\mathcal{A})} \Sigma_{i j}=\int_{\omega} \mathrm{d} V^{(\mathcal{B})} J_{F} \partial_{j}^{(\mathcal{B})} \sigma_{i j} . \tag{15}
\end{equation*}
$$

Relation of the Piola-Kirchhoff stresses to the elastic free energy In Hookean elasticity, where, the Cauchy stress is the derivative of the elastic free energy density per unit volume $\mathcal{L}_{\text {el }}$ with respect to the linear $\operatorname{strain} \omega_{i j}^{(\mathrm{lin})}=$ $u_{i, j}+u_{j, i}:$

$$
\begin{equation*}
\Sigma_{i j}=2 \frac{\partial \mathcal{L}_{\mathrm{el}}}{\partial \omega_{i j}^{(\operatorname{lin})}} \tag{16}
\end{equation*}
$$

In nonlinear elasticity, the second Piola-Kirchhoff stress takes the role of the Cauchy stress:

$$
\begin{equation*}
s_{i j}=2 \frac{\partial \mathcal{L}_{\mathrm{el}}}{\partial \omega_{i j}} \tag{17}
\end{equation*}
$$

The first Piola-Kirchhoff stress is given by the derivative of $\partial \mathcal{L}_{\text {el }}$ with respect to the deformation gradient tensor $F_{i j}$:

$$
\begin{align*}
\sigma_{i j} & =\frac{\partial \mathcal{L}_{\mathrm{el}}}{\partial F_{i j}}=\frac{\partial \mathcal{L}_{\mathrm{el}}}{\partial \omega_{k l}} \frac{\partial \omega_{k l}}{\partial F_{i j}}=\frac{1}{2} s_{k l}\left(F_{i k} \delta_{l j}+F_{i l} \delta_{k j}\right)=\frac{1}{2}\left(s_{k j}+s_{j k}\right) F_{i k} \\
& =F_{i k} s_{k j} \tag{18}
\end{align*}
$$

In the last step, we have used the symmetry of the second Piola-Kirchhoff stress s.

Figure 2: If we have growth and elasticity, we distinguish three configurations: The reference state \mathcal{A}, the virtual configuration of a stress-free grown state \mathcal{V}, and the actual grown and elastically deformed state \mathcal{B}. The mappings \mathbf{G}, \mathbf{A}, and \mathbf{F} relate the three configurations to each other.

2 Elasticity and growth

When the considered material is growing, for example because it is a biological tissue consisting of proliferating cells, one has to seperate the deformation due to growth from elastic deformation. This is basically the distinction between growth of a spring (that might be caused by uniform thermal expansion) versus extension of the spring by external forces. To make this distinction quantitative, seperate the deformation gradient tensor \mathbf{F} into a product of the two tensors \mathbf{G} and \mathbf{A} as proposed by Rodriguez et al. [RHM94] yielding

$$
\begin{equation*}
F_{i j}=A_{i k} G_{k j} \tag{19}
\end{equation*}
$$

where the growth tensor \mathbf{G} describes the deformation due to growth and \mathbf{A} describes the elastic part of the deformation ${ }^{3}$. We can then distinguish not only between the reference state \mathcal{A} and the current deformed state \mathcal{B}, but also define the virtual state \mathcal{V}, that describes the grown but otherwise undeformed material (see Fig. 2). Analogously to the case without growth, we use the shorthands $\partial_{i}^{(\mathcal{A})}:=\partial / \partial x_{i}^{(\mathcal{A})}, \partial_{i}^{(\mathcal{B})}:=\partial / \partial x_{i}^{(\mathcal{B})}$, and $\partial_{i}^{(\mathcal{V})}:=\partial / \partial x_{i}^{(\mathcal{V})}$ for the partial derivatives with respect to the different coordinate frames and define $J_{F}=|\mathbf{F}|, J_{G}=|\mathbf{G}|$, and $J_{A}=|\mathbf{A}|$. Elastic deformation is deformation from \mathcal{V} to \mathcal{B}, only. Therefore, we can for the moment forget about the frame \mathcal{A} and consider \mathcal{V} the reference state. We can then define the virtual Piola-Kirchhoff stress $\sigma^{(\mathcal{V})}$ that translates the force per unit area in the frame \mathcal{B} to a force per unit area in the frame \mathcal{V} as

$$
\begin{equation*}
\sigma^{(\mathcal{V})}=\frac{\partial \mathcal{L}_{\mathrm{el}}}{\partial A_{i j}} \tag{20}
\end{equation*}
$$

[^2]Since the physical force is the same, no matter which frame we choose, the following two equalities have to hold:

$$
\begin{equation*}
\Sigma_{i j} n_{j}^{(\mathcal{B})} \mathrm{d} A^{(\mathcal{B})}=\sigma_{i j} n_{j}^{(\mathcal{A})} \mathrm{d} A^{(\mathcal{A})}=\sigma_{i j}^{(\mathcal{V})} n_{j}^{(\mathcal{V})} \mathrm{d} A^{(\mathcal{V})} \tag{21}
\end{equation*}
$$

Using the transformation of the spatial derivative ${ }^{4} \partial_{j}^{(\mathcal{V})}=\left(G^{-1}\right)_{k j} \partial_{k}^{(\mathcal{A})}$ one can use Nanson's formula (5) applied to \mathcal{V}, \mathcal{B}, and \mathbf{G} to find

$$
\begin{equation*}
n_{i}^{(\mathcal{V})} \mathrm{d} A^{(\mathcal{V})}=J_{G}\left(G^{-1}\right)_{i j} n_{j}^{(\mathcal{A})} \mathrm{d} A^{(\mathcal{A})} . \tag{22}
\end{equation*}
$$

When we insert this result into eq. (21), we obtain

$$
\begin{equation*}
\underbrace{J_{G} \sigma_{i j}^{(\mathcal{V})}\left(G^{-1}\right)_{k j}}_{=\sigma_{i k}} n_{k}^{(\mathcal{A})} \mathrm{d} A^{(\mathcal{A})}=\sigma_{i j} n_{j}^{(\mathcal{A})} \mathrm{d} A^{(\mathcal{A})} \tag{23}
\end{equation*}
$$

and have thus established the relation between the Piola-Kirchhoff stresses $\sigma_{i j}$ and $\sigma_{i j}^{(\mathcal{V})}$.

References

[Cow04] Stephen C. Cowin. Tissue growth and remodeling. Annu. Rev. Biomed. Eng., 6(1):77-107, July 2004.
[FO01] Y. B. Fu and R. W. Ogden. Nonlinear Elasticity: Theory and Applications. Cambridge University Press, Cambridge, 2001.
[LL70] L. D. Landau and E. M. Lifshitz. Theory of Elasticity. Pergamon Press, New York, 2nd edition, 1970.
[RHM94] Edward K. Rodriguez, Anne Hoger, and Andrew D. McCulloch. Stress-dependent finite growth in soft elastic tissues. Journal of Biomechanics, 27(4):455-467, April 1994.

[^3]
[^0]: ${ }^{1}$ Note, that the majority of the literature uses lower case coordinate names x_{i}, in the deformed frame and capital coordinate names X_{i} in the reference frame.

[^1]: ${ }^{2}$ In the notation of Landau and Lifshitz [LL70] $\omega_{i j}=2 u_{i j}$.

[^2]: ${ }^{3}$ The possibility of this sepeartion and its implications are briefly discussed in [Cow04]

[^3]: ${ }^{4}$ Analogously, we have $\partial_{i}^{(\mathcal{B})}=\left(A^{-1}\right)_{j i} \partial_{j}^{(\mathcal{V})}$.

