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A very good introduction to nonlinear elasticity can be found in the book
by Fu and Ogden [FO01]. A necessary starter to dive into elasticity theory is
certainly the classical textbook by Landau and Lifshitz [LL70].

In the following, the component notation ci = Aijbj with Einstein summa-
tion over repeated indices is preferred over the notation c = A · b, because the
latter has to be translated to the former for every actual calculation, anyway.

1 Basic definitions

The elastic deformation can quantified by comparison of the deformed state B
to a reference state A. We denote the coordinates in the reference frame A
by x

(A)
i and use X

(B)
i for the coordinates in the current state B1. Further, we

introduce a mapping F that relates the coordinates of identical material points
in A to the corresponding coordinates in B (see Fig. 1). In order to simplify our

notation, we introduce the shorthands ∂
(A)
i := ∂/∂x

(A)
i and ∂

(B)
i := ∂/∂x

(B)
i

for the partial derivatives with respect to the coordinates in both frames. We
define the deformation gradient tensor F by

Fij = ∂
(A)
j x

(B)
i (1)

1Note, that the majority of the literature uses lower case coordinate names xi, in the
deformed frame and capital coordinate names Xi in the reference frame.

A B

F

Figure 1: We distinguish two configurations: The reference state A and the
elastically deformed state B. The mapping F relates both configurations to
each other.
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and introduce the symbol JF = |F| for its determinant. The deformation of the
solid is quantified by the strain ω defined as 2

ωij = FkiFkj − δij . (2)

Nanson’s formula In order to relate the oriented area element dA
(A)
i in

frame A to dA
(B)
i in frame B, we consider infinitesimal volume elements in both

frames A and B and use dx
(B)
i = Fijdx

(A)
j :

dV (B) = JFdV
(A) = JF dA

(A)
i dx

(A)
i (3)

and
dV (B) = dA

(B)
i dx

(B)
i = dA

(B)
i Fijdx

(A)
j . (4)

From these two formulas we conclude

JFdA
(A)
i = dA

(B)
k Fki

⇔JF
(
F−1

)

il
dA

(A)
i = dA

(B)
l

⇔JF
(
F−1

)

il
n
(A)
i dA(A) = n

(B)
i dA(B). (5)

Analogously, we find

n
(A)
i dA(A) = J−1

F Fkin
(B)
k dA(B). (6)

Helpful relations A few non-obvious identities can be found using Nanson’s
formula and very simple geometric arguments. Consider an arbitrary closed
surface δω of some volume ω in the reference frame A.

0 =

∫

∂ω

dA(A)n
(A)
i =

∫

∂Ω

dA(B)J−1
F Fkin

(B)
k (7)

Since we can choose the surface ∂ω arbitrarily, we find

∂
(B)
k

(
J−1
F Fki

)
= 0. (8)

In other words: in the sum ∂
(B)
k and J−1

F Fki commute. Analogously, we can
show that

∂
(A)
k

(
JF

(
F−1

)

ki

)
= 0. (9)

Three different stress tensors The surface force per unit area on a vector
area element dA(B) in the current frame B is expressed by the Cauchy stress

Σij . Using relation (5) we can translate this to a force per unit area on a vector
area element dA(A) in the reference frame A.

Σijn
(B)
j = JF

(
F−1

)

kj
Σij

︸ ︷︷ ︸

=: σik

n
(A)
k dA(A) = σijn

(A)
j dA(A), (10)

where we have defined the first Piola-Kirchhoff stress σ. The inverse relation is

Σij = J−1
F Fjkσik. (11)

2In the notation of Landau and Lifshitz [LL70] ωij = 2uij .
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Note, that unlike the Cauchy stress Σ, the first Piola-Kirchhoff stress σ is not
symmetric.

Both ΣdA(B) and σdA(A) are force vectors in the current frame B. Using
F, we can map it to the reference configuration A and obtain

(
F−1

)

ij
Σjkn

(B)
k dA(B) =JF

(
F−1

)

ij

(
F−1

)

lk
Σkj

︸ ︷︷ ︸

=: sil

n
(A)
l dA(A)

=
(
F−1

)

ij
σjk

︸ ︷︷ ︸

=: sik

n
(A)
k dA(A)

=sijn
(A)
j dA(A) (12)

where we defined the second Piola-Kirchhoff stress s. The inverse relations are

Σij = J−1
F FilFjkskl and σij = Fikskj . (13)

Note, that ∂
(B)
j Σij on the one hand and ∂

(A)
j σij and ∂jsij on the other hand

are force densities with respect to different volumina and therefore differ by a
factor of JF . This can be easily seen by noting that

F
(tot)
i =

∫

ω

dV (B)∂
(A)
j σij (14)

and

F
(tot)
i =

∫

Ω

dV (B)∂
(A)
j Σij =

∫

ω

dV (B)JF∂
(B)
j σij . (15)

Relation of the Piola-Kirchhoff stresses to the elastic free energy In
Hookean elasticity, where, the Cauchy stress is the derivative of the elastic free

energy density per unit volume Lel with respect to the linear strain ω
(lin)
ij =

ui,j + uj,i:

Σij = 2
∂Lel

∂ω
(lin)
ij

. (16)

In nonlinear elasticity, the second Piola-Kirchhoff stress takes the role of the
Cauchy stress:

sij = 2
∂Lel

∂ωij

. (17)

The first Piola-Kirchhoff stress is given by the derivative of ∂Lel with respect
to the deformation gradient tensor Fij :

σij =
∂Lel

∂Fij

=
∂Lel

∂ωkl

∂ωkl

∂Fij

=
1

2
skl (Fikδlj + Filδkj) =

1

2
(skj + sjk)Fik

= Fikskj . (18)

In the last step, we have used the symmetry of the second Piola-Kirchhoff stress
s.
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Figure 2: If we have growth and elasticity, we distinguish three configurations:
The reference state A, the virtual configuration of a stress-free grown state V ,
and the actual grown and elastically deformed state B. The mappings G, A,
and F relate the three configurations to each other.

2 Elasticity and growth

When the considered material is growing, for example because it is a biological
tissue consisting of proliferating cells, one has to seperate the deformation due
to growth from elastic deformation. This is basically the distinction between
growth of a spring (that might be caused by uniform thermal expansion) versus
extension of the spring by external forces. To make this distinction quantitative,
seperate the deformation gradient tensor F into a product of the two tensors G
and A as proposed by Rodriguez et al. [RHM94] yielding

Fij = AikGkj , (19)

where the growth tensor G describes the deformation due to growth and A

describes the elastic part of the deformation3. We can then distinguish not
only between the reference state A and the current deformed state B, but also
define the virtual state V , that describes the grown but otherwise undeformed
material (see Fig. 2). Analogously to the case without growth, we use the

shorthands ∂
(A)
i := ∂/∂x

(A)
i , ∂

(B)
i := ∂/∂x

(B)
i , and ∂

(V)
i := ∂/∂x

(V)
i for the

partial derivatives with respect to the different coordinate frames and define
JF = |F|, JG = |G|, and JA = |A|. Elastic deformation is deformation from
V to B, only. Therefore, we can for the moment forget about the frame A and
consider V the reference state. We can then define the virtual Piola-Kirchhoff
stress σ(V) that translates the force per unit area in the frame B to a force per
unit area in the frame V as

σ(V) =
∂Lel

∂Aij

. (20)

3The possibility of this sepeartion and its implications are briefly discussed in [Cow04]
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Since the physical force is the same, no matter which frame we choose, the
following two equalities have to hold:

Σijn
(B)
j dA(B) = σijn

(A)
j dA(A) = σ

(V)
ij n

(V)
j dA(V). (21)

Using the transformation of the spatial derivative4 ∂
(V)
j = (G−1)kj∂

(A)
k one can

use Nanson’s formula (5) applied to V , B, and G to find

n
(V)
i dA(V) = JG

(
G−1

)

ij
n
(A)
j dA(A). (22)

When we insert this result into eq. (21), we obtain

JGσ
(V)
ij

(
G−1

)

kj
︸ ︷︷ ︸

= σik

n
(A)
k dA(A) = σijn

(A)
j dA(A), (23)

and have thus established the relation between the Piola-Kirchhoff stresses σij

and σ
(V)
ij .
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4Analogously, we have ∂
(B)
i

= (A−1)ji∂
(V)
j

.
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