
First order phase transitions and the dynamics of

spinodal decomposition

In this note, we address the connection between equilibrium thermodynamics
of first order phase transitions and the dynamics of phase decomposition in the
spinodal region.

1 Binodal, Spinodal, and the region of phase co-
existence

1.1 Basic concepts

A phase transition of first order occurs, when the free-energy of a thermody-
namical system F (T, V,N), with temperature T , volume V and particle number
N , has two local minima. This means, that the system has two different homo-
geneous equilibrium states. These minimima are then necessarily divided by an
energy barrier, that is, a region of concave F . This has the immediate conse-
quence, that there is a certain region VI < V < VII in which a homogeneous state
is energetically disadvantageous compared to a heterogeneous state, where the
system’s material is divided into coexisting parts with the densities nI = N/VI
and nII = N/VII. Realizations of such heterogeneous states are commonly ob-
served, for example, in the liquid/vapour transition of H2O or CO2, where the
coexistence of liquid and vapour can readily be prepared experimentally.

In order to illuminate this phenomenon, we will first determine the bound-
aries of the coexistence region VI, VII and then calculate the free-energy of the
heterogeneous state.

In equilibrium, the coexistence of two phases is possible if and only if pressure
p, temperature T , and chemical potential µ are equal in both phases, that is,
throughout the entire system. Therefore, one can use the condition

µI(T, pI/II) = µII(T, pI/II) = const.,

where pI/II denotes the coexistence pressure, together with the Gibbs-Duhem
relation G =

∑
j µj , with free enthalpy G, to infer

GI(T, pI/II) = GII(T, pI/II)

⇔ FI + pI/IIVI = FII + pI/IIVII

⇒ FI − FII = pI/II (VII − VI) . (1)

Here, we have used the relation G = F + pV between the thermodynamic
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Figure 1: Isothermal lines of CO2 around the liquid-gas phase transition mod-
elled by the van-der-Waals equation of state. The solid lines are, listed from
top to bottom, isothermals calculated for T = 320 K, T = Tcr = 303.998 K,
T = 280 K, and T = 260 K. The binodal is plotted as a dashed line. It delimits
the region where homogeneous states are metastable. The spinodal curve is
plotted as a dotted line and it marks the boundary of the region where homo-
geneous states are unstable. Binodal and spinodal meet in at the critical point,
which is marked by a black dot.

potentials. Since we also know that for T = const.

FI − FII = −
∫ VI

VII

dV p, (2)

we can combine the equations (1) and (2) to obtain∫ VII

VI

dV p = pI/II (VII − VI) .

This result allows to find the coexistence region by a simple geometrical ap-
proach: the famous Maxwell construction. Drawing the isotherm of the ho-
mogeneous system in a pressure-volume diagram, the coexistence pressure pI/II
corresponds to a horizontal line which is drawn in a way that the areas A and B
in Fig. 1 are of equal size. This uniquely defines pI/II, VI, and VII. The energy
of the heterogeneous state is given by F = cIFI + cIIFII, where FI = F (T, VI, N)
and FII = F (T, VII, N) while cI = NI/N and cII = NII/N denote the fractions
of molecules in the two phases. Since cI + cII = 1 and V = cIVI + cIIVII, we can
deduce the so-called lever rule:

cI =
VII − V
VII − VI

, and cII =
V − VI
VII − VI

.

Accordingly, we can write the free-energy of the heterogeneous state as

Fhet(T, V,N) =
VII − V
VII − VI

FI +
V − VI
VII − VI

FII,

which is obviously a straight line with the slope ∂Fhet/∂V = (FII−FI)/(VII−VI),
connecting F (T, VI, N) and F (T, VII, N). Since we argued above, that the pres-
sure p = −∂F/∂V is constant along any isotherm in the coexistence region,
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Figure 2: Free energy of CO2 at temperature T = 260 K modelled by the van-
der-Waals equation of state. In the binodal region, which is shown in light gray,
homogeneous states are metastable, since heterogeneous states of lower free
energy, lying on the common tangent (dashed line), are possible. The spinodal
region is shown in dark gray.

we infer that the straight line Fhet is actually tangent to F in both points
F (T, VI, N) and F (T, VII, N). It is thus termed the common tangent in the
literature. Due to the concavity of the free-energy of the homogeneous state
in between the two local minima, the tangent Fhet is lying below F , making
the heterogeneous states on the tangent energetically more favourable. This is
shown graphically in Fig. 2. This region in state-space in which the hetero-
geneous state has a lower overall free-energy is called the binodal region, and
it is the region where phase coexistence is possible. Its boundary, the binodal
curve, is given by the loci of VI, VII written as functions of another state variable
such as the temperature T , yielding curves VI(T ), VII(T ). If phase coexistence
is not possible for all values of T , then the two curves VI(T ), VII(T ) will meet
in a critical point at a temperature Tcr beyond which the phases are no longer
distinguishable from each other.

However, the given argument does not claim that a state within the binodal
is unstable but only that it is metastable, that is, unstable to finite but not
to infinitesimal perturbations. In fact, these metastable states are commonly
observed, for example in form of an overheated liquid or an undercooled gas.

So, when does the homogeneous state actually become unstable? Looking at
the pressure p = −∂F (T, V,N)/∂V of the system, we note that any state with
∂p/∂V = −∂2F/∂V 2 > 0, is mechanically unstable, so that the inflection points
∂2F (T, V,N)/∂V 2 = 0, when written as functions of another state variable,
such as T , demark a boundary, the so-called spinodal curve beyond which no
homogeneous state can exist. The region within this boundary, that is the
region of negatively curved F (T, V,N), is called the spinodal region. In the next
subsection, we will explain this instability by use of an energetic argument.

It is clear that the spinodal region is a subset of the binodal region, since
in between every two minima of the free-energy there is necessarily a region of
negative curvature. By the same argument, we can deduce that spinodal and
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binodal meet in the critical point, because the minima smoothly approach each
other for T → Tcr, so that minima and inflection points finally coincide.

Throughout this thesis, we will describe the surfactant monolayer in terms
of its molecular number density n = N/V . We therefore use the remainder
of this subsection to formulate the free-energy using the variable n, that is
F̃ (T, V, n) := F (T, V, nV ), and write

F̃ (T, V, n) = f(T, n)V, (3)

denoting the system’s free-energy density by f(T, n).
The pressure of the system is then given by

p = −∂F (T, V,N)

∂V
= −∂F̃ (T, V, n)

∂V
− ∂̃F (T, V, n)

∂n

∂n

∂V

= −∂F̃ (T, V, n)

∂V
+
∂F̃ (T, V, n)

∂n

n

V

= −∂F̃ (T, V, n)

∂V
+ nµ,

where we introduced the chemical potential µ = (1/V )∂F (T, V, n)/∂n. Inserting
eq. (3), we find

p̃(T, V, n) = −f(n) + n
∂f(n)

∂n
. (4)

In order to determine the mechanical stability of homogeneous states, we
have to calculate

∂p(T, V,N)

∂V
=
∂p̃(T, V, n)

∂V
− n

V

∂p̃(T, V, n)

∂n

= −∂
2F̃ (T, V, n)

∂V 2
− 2

n

V

(
1

V

∂̃F (T, V, n)

∂V
− ∂2F̃ (T, V, n)

∂n∂V

)

− n2

V 2

∂2F̃ (T, V, n)

∂n2
.

In case of eq. (3) we obtain

∂2F̃

∂V 2
= 0,

∂F̃

∂V
=
∂f(n)

∂n
V,

∂2F̃

∂n∂V
=
∂f

∂n
,

∂2F̃

∂n2
=
∂2f

∂n2
V,

yielding
∂p(T, V,N)

∂V
=
∂2F (T, V,N)

∂V 2
= − n

2

V 2

∂2F̃ (T, V, n)

∂n2
.

We conclude that, no matter if we look at the free-energy in terms of variable
volume V or variable density n, the stability is always determined by the second
derivative of the corresponding free-energy function.

1.2 An energetic argument on the instability of homoge-
neous systems within the spinodal region

The conditon of mechanical stability, ∂p(T, V,N)/∂V < 0, can be substantiated
by a simple energetical argument which, despite its illustrativeness, is - at least
to the author’s awareness - never given in the literature.
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A homogeneous state is unstable when even an infinitesimal perturbation
leads to a state of lower free-energy. Let us assume, that an initially homoge-
neous system of density n0 is perturbed with a perturbation of amplitude dn,
so that a volume portion V+ of the fixed total volume V0 now has the density
n0 + dn with infinitesimal dn. Material conservation demands, that another
portion V0 − V+ is perturbed at the same time so that it now has the density
n0 − V+/(V0 − V+)dn. Then the free-energy difference between the perturbed
and the initial state is given by

∆F = V+f(n0 + dn) + (V0 − V+)f

(
n0V0 − (n0 + dn)V+

V0 − V+

)
− V0f(n0)

= (V+ − V0)f(n0) + V+
∂f

∂n

∣∣∣∣
n0

dn+ V+
1

2

∂2f

∂n2
dn2

+ (V0 − V+)

[
f(n0)− ∂f

∂n

∣∣∣∣
n0

V+
V0 − V+

dn− 1

2

∂2f

∂n2

∣∣∣∣
n0

(
V+

V0 − V+

)2

dn2

]
+O

(
dn3

)
.

Collecting terms order by order, we see that the dn0 and dn1 contributions
exactly cancel each other. The lowest order term of ∆F is therefore given by

∆F =
1

2

(
1 +

V+
V0 − V+

)
∂2f

∂n2

∣∣∣∣
n0

dn2 +O
(
dn3

)
.

Since V+ is by definition positive and less than V0, we conclude that the sign
of ∆F for infinitesimal dn is determined solely by the curvature of the free-
energy density in the inital state n0. Note, that the above argument holds true
also when we assume the perturbation to be limited to a subvolume V ′ ⊂ V0.
This means, that a local infinitesimal fluctuation around n0 will reduce the free-
energy of the system if and only if ∂2f(n0)/∂n2 < 0. Thus, we have reproduced
the stability conditon given in the previus section by explicitly referring to the
change of the system’s free-energy.

2 Dynamics of spinodal decomposition:
The Cahn-Hilliard equation

So far we have only considered equilibrium states and investigated their stability.
The actual dynamics of a system within the spinodal region is governed by
the Cahn-Hilliard equation [CH58], which describes the time evolution of the
spatially varying density ρ(x, t) of the considered thermodynamical system. It
can be written as a conservation law

∂tρ(x, t) = −∇ · J(x, t),

with the flux

J(x, t) = −α∇ δF [ρ]

δρ(x, t)
, (5)

where α denotes a mobility factor. In the simple case of constant α, the Cahn-
Hilliard equation takes the form

∂tρ(x, t) = α∆
δF [ρ]

δρ(x, t)
. (6)
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It is important to recognize, that the Cahn-Hilliard equation exhibits potential
dynamics. This means that an isolated system approaches an equilibrium state,
which corresponds to a local minimum of the free-energy functional F [ρ]. In
the terminology of nonlinear dynamics this means, that F [ρ] is the Lyapunov
functional of the system.

This holds true for arbitrary positive definite mobility factors. To prove this,
one has to consider how F [ρ] changes with time. A short calculation yields

∂tF =

∫
V

dDx
δF
δρ(x)

∂tρ(x)

∣∣∣∣ insert (6)

=

∫
V

dDx
δF
δρ(x)

∇ ·
[
α∇ δF

δρ(x)

] ∣∣∣∣ int. by parts

=

∫
V

dDx∇
[
α
δF
δρ(x)

∇ δF
δρ(x)

]
−
∫
V

dDxα

(
∇ δF
δρ(x)

)2 ∣∣∣∣ Gauss’ law

=

∫
∂V

d(D−1)xα
δF
δρ(x)

∇ δF
δρ(x)

−
∫
V

dDxα

(
∇ δF
δρ(x)

)2

.

Thus we have decomposed the temporal change of the free-energy into a volume
contribution and a boundary contribution. The value of the boundary integral
depends, of course, on the specific boundary conditions of the system under
consideration. In most relevant cases, such as periodic boundary conditions or
also for ρ → const. as x → ∞, it simply vanishes. For an isolated system, this
will always be true, since in general, a system can be regarded as isolated, only
if there is no energy flux through the boundaries. This leads us to the result

∂tF = −
∫
V

dDx α

(
∇ δF
δρ(x)

)2

︸ ︷︷ ︸
≥ 0

≤ 0, (7)

that is, either ρ is already in an equilibrium state or it is evolving towards one.
Cahn and Hilliard proposed the following free-energy functional for a general

isotropic system of nonuniform composition [CH58]:

F [ρ] =

∫
V

dDx
{κ

2
(∇ρ)

2
+ fhom(ρ)

}
. (8)

The idea behind this model is simple: To molecules within a subvolume dV of
the system it makes little difference whether they are part of a homogeneous
system or of an inhomogeneous system with very small density gradients. Thus,
as a zeroth approximation, the system’s overall free-energy simply equals the
sum of the free-energies of each infinitesimal subvolume, fhom(ρ(~x))dV . One
can expand the free-energy density in powers of ∇ρ, keeping only the lowest
orders:

f(ρ,∇ρ,∇2ρ, . . . ) = fhom(ρ) + Li∂iρ+ κ
(1)
ij ∂i∂jρ+ κ

(2)
ij (∂iρ) (∂jρ) + . . .

The tensors κ(1,2) and the vector L reflect the symmetry properties of the con-
sidered material. For isotropic media, one obtains L = 0 and κ(1) = κ1I, κ

(2) =
κ2I, yielding the free-energy density of eq. (8), where κ = −dκ1/dρ+ κ2/2.
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Figure 3: Free energy of homogeneous solutions (left) and dispersion relations of
small perturbations around these solutions (right). The binodal region is drawn
in light gray while the spinodal region is coloured dark gray. For a symmetric
Fhom the common tangent (dashed line) is simply the horizontal line connecting
the minima of the free energy. Solutions from within the spinodal region, where
Fhom is concave, are linearly unstable and have a finite band of unstable modes.

Inserting the free-energy functional (8) into the Cahn- Hilliard equation (6),
we obtain

∂tρ(x, t) = −κ∆2ρ+
∂2fhom
∂ρ2

∆ρ+
∂fhom
∂ρ

(∇ρ)
2
. (9)

From our considerations in section 1 we already know qualitatively what to
expect from solutions to this equation: Homogeneous system outside of the bin-
odal region are absolutely stable, within the binodal region they are metastable,
and in the spinodal region they are unstable. Upon instability, the homogeneous
state decomposes into coexisting domains of different densities ρI, ρII.

Spatially homogeneous fields ρ = ρ̂ = const. are always stationary solutions
of the Cahn-Hilliard equation. The linear stability of these solutions is readily
obtained by looking at small perturbations ζ(x, t). Inserting ρ(x, t) = ρ̂+ζ(x, t)
into eq. (9), and keeping only the linear terms, we find that the time evolution
of the perturbation is governed by

∂tζ = −

{
κ∆2 − ∂2fhom

∂ρ2

∣∣∣∣
ρ̂

∆

}
ζ.

Using the ansatz ζ ∼ exp(λt + ik · x), one finds the dispersion relation of
the perturbation, which only depends on the absolute value of the wavevector
k = |k|, since only even powers of ∇ are applied to ζ:

λ(k) = −k2
{
κk2 +

∂2fhom
∂ρ2

∣∣∣∣
ρ̂

}
. (10)

From this expression, it is obvious, that the stability of a homogeneous solu-
tion ρ̂ is determined by the curvature of the free-energy at ρ = ρ̂. Physically
speaking, a solution ρ̂ is stable, as long as it is chosen from outside the spin-
odal region, which is defined as the region of concave fhom. Dispersion relations
for three different ρ̂ in a system with a free-energy of symmetric double-well
shape are shown in Figure 3. Otherwise, there is finite band of modes k with
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Figure 4: Spacetime plot of spinodal decomposition obtained from direct numer-
ical simulation of the Cahn-Hilliard equation on a periodic domain. Red: ρ = 1,
blue: ρ = −1. differences were used for spatial order Parameters: L = 250,
N = 512, dt = 4,α = κ = 1.

0 < k <
√

(∂2fhom/∂ρ2)|ĉ which are amplified with λ(k) > 0. The wavenumber
kmax, which is maximally amplified, can be calculated from eq. (10) as

kmax =

√
− 1

2κ

∂2fhom
∂ρ2

∣∣∣∣
ρ̂

.

The corresponding maximal amplification is given by

λmax := λ (kmax) = −3

4

∂2fhom
∂ρ2

∣∣∣∣
ρ̂

.

With kmax and λmax we have obtained an estimate of the inverse time and length
scales of the early stages of spinodal decomposition.

However, after a short time, the nonlinearity of eq. 9 strikes and leads to a
different behaviour known as coarsening of the domains which are formed during
the initial pattern formation. During this process, large domains grow larger
while small domains grow smaller and finally disappear. Two mechanisms can be
distinguished: Firstly, two domains can directly merge into a single larger one,
thereby minimizing thier overall interfacial energy. Secondly, material diffuses
from the surface of small domains towards the larger ones, that is, the domains
are absorbed without direct contact to other domains. This phenomenon is
known as Ostwald-ripening. Figure 4 visualizes the dynamics of this process
in a spacetime plot. The domain shape depends on the amount of available
material. The phase with the smaller overall volume will form spherical domains
in order to diminish the interfacial energy. If, however, both phases have roughly
the same total volume, one will rather observe labyrinthine structures. The
coarsening process will continue, until finally only one domain of each phase
remains, divided by the smallest possible interface.

References

[CH58] John W. Cahn and John E. Hilliard. Free energy of a nonuniform
system. i. interfacial free energy. J. Chem. Phys., 28(2):258–267, 1958.

8



Figure 5: Solutions of the Cahn-Hilliard equation on a periodic domain, as
obtained from direct numerical simulation. Red means ρ = 0, blue means
ρ = −1. The initial conditions were randomly perturbed homogeneous solutions.
In the first row ρ̂ = −0.4, in the second row ρ̂ = −0.1, and in the third row ρ̂ = 0.
In each row, time increases from left to right. The coarsening of the structures
towards higher average wavelength can be clearly seen. Comparing the pictures
of each column, one can see the different morphologies of the resulting patterns,
going from circular domains to labyrinthine patterns as ρ̂→ 0.
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